# Efficacy and Safety of Boosted Once-Daily Atazanavir and Twice-Daily Lopinavir Regimens in Treatment-Naïve HIV-1 Infected Subjects

CASTLE: 48-Week Results

J. M. Molina,<sup>1</sup> J. Andrade-Villanueva,<sup>2</sup> J. Echevarria,<sup>3</sup> P. Chetchotisakd,<sup>4</sup> J. Corral,<sup>5</sup> N. David,<sup>6</sup> M. Mancini,<sup>7</sup> L. Percival,<sup>7</sup> A. Thiry,<sup>7</sup> D. McGrath <sup>7</sup>

<sup>1</sup>Hopital Saint-Louis, Paris, France; <sup>2</sup>Hospital Civil De Guadalajara, Guadalajara, Mexico; <sup>3</sup>Hospital Nacional Cayetano Heredia, Lima, Peru; <sup>4</sup>Khonkaen University, Khonkaen, Thailand; <sup>5</sup>Hospital Interzonal Gral. De Agudos Oscar Alende, Buenos Aires, Argentina; <sup>6</sup>Brooklyn Medical Centre, Western Cape, South Africa; <sup>7</sup>Bristol-Myers Squibb, Wallingford, CT, USA

### Study Design

International, multicenter, open-label, randomized, 96-week study to determine the comparative clinical efficacy and safety of ATV/r and LPV/r in treatment-naïve HIV-1 infected subjects

**Screening/Enrollment** 

HIV RNA ≥ 5000 c/mL, no CD4 cell count restriction Randomization (N = 883)

Stratified: HIV RNA < 100,000 c/mL vs ≥ 100,000 c/mL; geographic region

(1:1)

ATV/r 300/100 mg QD (n = 440)

TDF/FTC 300/200 mg QD

LPV/r 400/100 mg BID (n = 443)

TDF/FTC 300/200 mg QD

### **Study Objectives**

#### **Primary end point:**

- Proportion of subjects with HIV RNA < 50 c/mL at week 48</li>
  - Principal analysis: ITT-Confirmed Virologic Response (CVR) (NC = F)
  - Supportive analyses:
    - ITT-TLOVR
    - On-treatment-Virologic Response Observed Cases (OT-VROC)

#### **Primary objective:**

- Demonstrate noninferiority of ATV/r once daily vs LPV/r twice daily based on primary end point
  - $-\Delta$  -10%, ATV/r LPV/r

#### **Secondary end points:**

- Immunologic response
- Safety and tolerability
- Changes in fasting lipids
- Resistance

### **Baseline Characteristics**

|                                                  | ATV/r                   | LPV/r                   |  |
|--------------------------------------------------|-------------------------|-------------------------|--|
|                                                  | n = 440                 | n = 443                 |  |
| Age, median (min-max)                            | <b>34</b> (19-72)       | <b>36</b> (19-71)       |  |
| Female, n (%)                                    | <b>138</b> (31)         | <b>139</b> (31)         |  |
| CDC Class C AIDS, n (%)                          | <b>19</b> (4)           | <b>24</b> (5)           |  |
| HIV RNA log <sub>10</sub> c/mL, median (min-max) | <b>5.01</b> (2.60-5.88) | <b>4.96</b> (3.32-5.88) |  |
| HIV RNA ≥ 100,000 c/mL, n (%)                    | <b>225</b> (51)         | <b>208</b> (47)         |  |
| CD4 cells/mm³, median (min-max)                  | <b>205</b> (2-794)      | <b>204</b> (4-810)      |  |
| CD4 < 50 cells/mm <sup>3</sup> , n (%)           | <b>58</b> (13)          | <b>48</b> (11)          |  |
| Hepatitis B and/or C co-infection, n (%)         | <b>61</b> (14)          | <b>51</b> (12)          |  |

## **Disposition**

|                                                    | ATV/r            | LPV/r            |
|----------------------------------------------------|------------------|------------------|
|                                                    | n = 440<br>n (%) | n = 443<br>n (%) |
| Randomized                                         | 440              | 443              |
| Treated                                            | <b>438</b> (99)  | <b>440</b> (99)  |
| Discontinued before week 48                        | <b>39</b> (9)    | <b>58</b> (13)   |
| AEs                                                | 10 (2)           | <b>14</b> (3)    |
| Death                                              | <b>4</b> (< 1)   | <b>4</b> (< 1)   |
| Lack of efficacy                                   | 5 (1)            | 8 (2)            |
| Lost to follow-up                                  | 6 (1)            | <b>6</b> (1)     |
| Poor/noncompliance                                 | 6 (1)            | 9 (2)            |
| Withdrew consent                                   | 4 (< 1)          | <b>13</b> (3)    |
| Other                                              | <b>4</b> (< 1)   | <b>4</b> (<1)    |
| (pregnancy, no longer meets study criteria, other) |                  |                  |

### Primary Efficacy End Point ITT-Confirmed Virologic Response (NC = F)



ATV/r has non-inferior antiviral efficacy compared with LPV/r

#### **Supporting Analyses:**

ITT-TLOVR: HIV RNA < 50 c/mL: ATV/r 78%, LPV/r 76%; 1.9 (-3.6, 7.4) OT-VROC: HIV RNA < 50 c/mL: ATV/r 84%, LPV/r 87%; -3.5 (-8.7, 1.8)

# ITT-Confirmed Virologic Response (NC = F) by Qualifying HIV Viral Load



# Response Rate by Baseline CD4 Cell Count - Post Hoc Analysis



### **CD4 Mean Change**



### **Adverse Events Summary**

|                                                         |                            | ATV/r<br>n = 441<br>n (%) | LPV/r<br>n = 437<br>n (%) |
|---------------------------------------------------------|----------------------------|---------------------------|---------------------------|
| Serious Adverse Event                                   | s (SAEs)                   | 51 (12)                   | 42 (10)                   |
| All grade 2-4 treatment                                 | t-related AEs <sup>a</sup> | 115 (26)                  | 129 (30)                  |
| Grade 2-4 treatment-<br>related AEs ≥ 3% <sup>a,b</sup> | Jaundice                   | 16 (4)                    | 0                         |
|                                                         | Nausea                     | 17 (4)                    | 33 (8)                    |
|                                                         | Diarrhea                   | 10 (2)                    | 50 (11)                   |
|                                                         | Rash                       | 14 (3)                    | 9 (2)                     |

Renal all grade AEs: 2% in both arms

<sup>&</sup>lt;sup>a</sup> Through 48 weeks.

<sup>&</sup>lt;sup>b</sup> Excluding laboratory abnormalities reported as AEs.

# Selected Grade 3-4 Laboratory Abnormalities

|                                         | ATV/r<br>n = 441<br>n (%) | LPV/r<br>n = 437<br>n (%) |
|-----------------------------------------|---------------------------|---------------------------|
| Total bilirubin elevation (> 2.5 × ULN) | 146 (34)                  | 1 (<1)                    |
| ALT elevation (> 5 × ULN)               | 8 (2)                     | 6 (1)                     |
| AST elevation (> 5 × ULN)               | 9 (2)                     | 2 (<1)                    |
| Total cholesterol (≥ 240 mg/dL)         | 30 (7)                    | 77 (18)                   |
| Triglycerides (≥ 751 mg/dL)             | 2 (<1)                    | 15 (4)                    |
| Hyperglycemia (≥ 251 mg/dL)             | 1 (<1)                    | 1 (<1)                    |

- Change from baseline at 48 weeks in renal function:
  - Mean serum creatinine: + 0.05 mg/dL ATV/r, + 0.02 mg/dL LPV/r
  - Median calculated creatinine clearance: 1% decrease in both arms

# Fasting Lipids Mean Percent Changes From Baseline (LOCF)



 2% of ATV/r vs 7% of LPV/r subjects initiated lipid-lowering therapy during the study

### Conclusions

- Once-daily ATV/r demonstrated non-inferior antiviral efficacy to twice-daily LPV/r, both in combination with TDF/FTC, in treatmentnaïve patients
- In patients with advanced disease, ATV/r was highly effective in achieving virus undetectability
- Both regimens were generally well-tolerated with low rates of discontinuation
  - Jaundice and hyperbilirubinemia were more commonly reported for ATV/r
  - Nausea and diarrhea occurred with greater frequency on LPV/r
- ATV/r had a significantly better lipid profile (TC, TG, non-HDL) compared to LPV/r
- Once-daily ATV/r plus TDF/FTC is an appropriate therapeutic option for treatment-naïve patients

### Acknowledgements

### The patients and their families for their participation and commitment during the study. The BMS study team, investigators, and co-investigators:

**Argentina:** Jorge Benetucci, Arnaldo Casiro, Isabel Cassetti, Jorge Corral, Jorge Galindez, Norma Luna, Sergio Lupo, Elida Pallone, Claudia Rodriguez

Australia: David Baker, Norman Roth, Cassy Workman

Austria: Norbert Vetter

Belgium: Jolanda Pelgrom

**Brazil:** Jose Luiz Andrade, Margareth Da Eira, Beatirz Grinsztejn, Rogerio De Jesus Pedro, Frederico Rangel, Roberto Zajdenverg

Canada: Jean-Guy Baril, Frederic Crouzat, Roger Leblanc, Cecile

Tremblay

Villatoro

Chile: Luis Bavestrello Fernandez, Pablo Gaete Gutierrez, Luis

Noriega, Carlos Perez

Columbia: Otto Sussmann Costa Rica: Gisela Herrera

Dominican Republic: Ellen Koenig

**France:** Jean-Franco Bergmann, Pierre Dellamonica, Christine Katlama, Jean-Michel Molina, Daniel Vittecoq, Lawrence Weiss

**Germany:** Keikawus Arasteh, Gerd Faetkenheuer, Jürgen Rockstroh, Albrecht Stoehr

Guatemala: Eduardo Arathoon, Juan-Felipe Garcia, Carlos Mejia-

Hong Kong: Patrick Li

Indonesia: Samsuridjal Djauzi

Italy: Andrea Antinori, Adriano Lazzarin, Antonella D'Arminio Monforte,

Giovanni Penco, Vincenzo Vullo

**Mexico:** Martin Magana Aquino, Gerado Amaya, Jaime Andrade-Villanueva, Duque Jorge, Juan Sierra, Juan Carlos Tinoco, Isidro Zavala

Netherlands: I.M. Hoepelman, S. Van Der Geest

Panama: Canton Alfredo, Nestor Sosa

Peru: Robinson Cabello, Juan Echevarria, Alberto La Rosa, Raul

Salazar

Portugal: Francisco Antunes

Puerto Rico: Sonia Saavedra, Gladys Sepulveda

Singapore: Li Lin

**Spain:** Jose Arribas, Bonaventura Clotet, Jose Gatell, Pilar Miralles, Federico Pulido Ortega, Antonio Rivero, Ignacio Santos Gil, Jesus

Santos Gonzalez

**South Africa:** Neal David, Cindy Firnhaber, D Johnson, Edrich Krantz, Gulam Latiff, Daniel Malan, Des Martin, Jennifer Pitt, Michele Zeier

Thailand: Ploenchan Chetchotisakd, Khuanchai Supparatpinyo

Taiwan: Szu-Min Hsieh, Yung-Ching Liu, Wing Wai Wong

**United Kingdom:** Jonathan Ainsworth, Margaret Johnson, Graeme Moyle, George Scullard, Ian Williams

**United States:** David Brand, Frederick Cruickshank, Edwin DeJesus, Cheryl McDonald, Robert Myers, Sujatta Reddy, Michael Sension, Douglas Ward

This BMS-supported study is also known as Study Al424138 and is registered with ClinicalTrials.gov, number NCT00272779

Molina et al. CROI 08. Presentation 37